Энерго- и ресурсосбережение – XXI век. 2023. С__--__ Energy and resource saving XXI century. 2023. P. __-_.

Энергосберегающие электротехнологические процессы и установки в машиностроении и металлургии

Научная статья УДК 674.047.3-047.58

Моделирование изменения емкости рабочего конденсатора электротермических установок для ВЧ сушки пиломатериалов

Шевляков Дмитрий Эдуардович¹, Дмитрий Андреевич Коренков²

^{1,2}ФГБОУ ВО «ОГУ имени И.С. Тургенева», Орёл, Россия,

Аннотация. В статье анализируется зависимости между ёмкостью рабочего конденсатора ВЧ установок для диэлектрического нагрева и магнитной проницаемостью, температурой, влажностью древесины с применением компьютерного моделирования.

Ключевые слова: ВЧ сушка древесины, частота тока, конденсатор, программный комплекс «Simintech», планирование эксперимента.

Для цитирования: Шевляков Дм.Э., Коренков Д.А. Моделирование изменения емкости рабочего конденсатора электротермических установок для вч сушки пиломатериалов // Энерго-и ресурсосбережение – XXI век. 2023. С. ______.

Energy-saving electrical processes and installations in mechanical engineering and metallurgy.

Original article

Modeling of changes in the capacitance of the working capacitor of electrothermal installations for HF drying of lumber

Shevlyakov Dmitry Eduardovich¹, Dmitry AndreevichKorenkov²

^{1,2} Oryol state university of I.S. Turgenev, Oryol, Russia

Corresponding author: Dmitry Andreevich Korenkov, dimas.corenkov@yandex.ru

Abstract: The article analyzes the relationship between the capacity of the working capacitor of RF installations for dielectric heating and the magnetic permeability, temperature, humidity of wood using computer modeling.

Keywords: HF wood drying, current frequency, capacitor, Simintech software package, experiment planning.

For citation: Shevlyakov Dm.E., Korenkov D.A. Modeling of changes in the capacitance of the working capacitor of electrothermal installations for HF drying of lumber // Energy and resource saving – XXI century. 2023. P. _ _ - _ _.

Высокочастотный (ВЧ) метод сушки пиломатериалов позволяет добиться более высокого качества конечной продукции по сравнению с конвективным или традиционным методами при меньшей продолжительности. Высокочастотная сушка реализуется путём укладки заготовок в рабочий конденсатор, состоящий из двух и более электродов, подключаемых к генератору токов высокой частоты [1].

Высокочастотные электротермические установки схожи по устройству между собой, общая схема представлена на рисунке 1. Различия заключаются в специфических вспомогательных устройствах или системах необходимых для конкретного рабочего

¹dmsch3557@yandex.ru

²dimas.corenkov@yandex.ru, https://orcid.org/0000-0003-0221-1963

¹dmsch3557@yandex.ru

²dimas.corenkov@yandex.ru, https://orcid.org/0000-0003-0221-1963

[©] Шевляков Дм.Э., Коренков Д.А., 2023

технологического процесса (система охлаждения, мощность и вид рабочего органа, элементная база генераторного блока и уровень автоматизации системы управления). Данный тип установок имеет ряд эксплуатационных особенностей, отдельно выделим необходимость поддержания во время работы резонансной согласованной частоты генератора и рабочего конденсатора, которая обеспечивает максимальный КПД (η) и коэффициент мощности $(cos\phi)$, нарушение данного условия работы приводит к сильному снижению данных технико-экономических параметров [2].

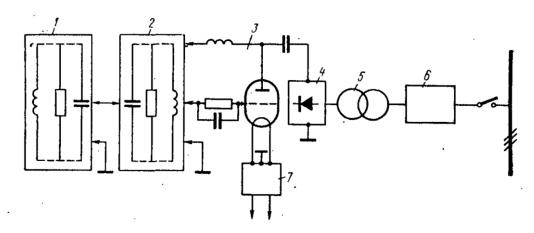


Рисунок 1 – Общая схема высокочастотных электротермических установок с ламповыми генераторами

1 — рабочий контур; 2 — промежуточный согласующий контур; 3 — блок генераторной лампы; 4 — анодный выпрямитель; 5 — анодный повышающий трансформатор; 6 — блок аварийных защит и блокировок; 7 — источник питания цепей накала генераторных ламп.

Для обеспечения эффективности процесса сушки пиломатериалов требуется постоянная настройка параметров контуров, с помощью которых осуществляется согласование генератора и нагрузки. Из анализа доступных схемотехнических решений [3, 4], относящихся к ламповым моделям генераторов, преимущественно, позднего советского периода, следует, что такая настройка предусматривалась либо в ручном режиме силами оперативного персонала, либо не предусматривалась вовсе. Известны и немногочисленные разработки [5], направленные на обеспечение согласованной работы высокочастотного генератора и нагрузки, также не предусматривающие автоматизацию данного процесса, но требующие адаптацию технологии к условиям сушки крупногабаритных пиломатериалов. Из отмеченного следует заключить, что разработка системы управления параметрами согласующих элементов, оптимальное значение которых должно устанавливаться в зависимости от мгновенных характеристик нагрузки, является актуальной задачей повышения энергоэффективности установок для диэлектрической сушки пиломатериалов.

На текущем этапе решения данной задачи требуется разработка математической модели, описывающей изменение параметров нагрузки, а именно емкости рабочего конденсатора. Одним из распространенных способов укладки пиломатериалов прямоугольной формы является укладка с вертикальными электродами, показанная на рисунке 2.

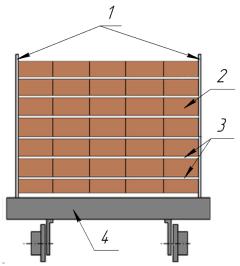


Рисунок 2 — Рабочий конденсатор с вертикальными электродами 1 — вертикальные электроды конденсатора; 2 — пиломатериалы; 3 — прокладки; 4 — тележка

Для вычисления электрической ёмкости такого конденсатора применима формула (1), [6]:

$$C_{p} = \frac{(\varepsilon'_{B} S_{B} + \varepsilon'_{A} S_{A}) \varepsilon'_{B} S}{4\pi (d_{B} \varepsilon'_{B} S + d_{B} \varepsilon'_{B} S_{B} + \varepsilon'_{A} S_{B} d_{B})}, \tag{1}$$

где п — число электродных пластин;

 $\epsilon'_{\text{в}}$ — диэлектрическая проницаемость воздуха;

 $\epsilon_{\scriptscriptstyle A}^\prime$ — диэлектрическая проницаемость высушиваемой древесины;

S – общая односторонняя площадь электродной пластины;

 $S_{\text{в}}$ — площадь пластины, занятая горизонтальными воздушными промежутками между пиломатериалами, см 2 ;

 $S_{\mbox{\tiny д}}$ — площадь пластины электрода, занятая высушиваемыми пиломатериалами, см²;

d_в — сумма всех воздушных промежутков по высоте штабеля, см;

 d_{II} — сумма толщин всех пиломатериалов по высоте штабеля, см.

Из анализа формулы (1) следует, что если пренебречь усушкой, то габаритные размеры пиломатериалов в штабеле на динамическое изменение емкости конденсатора практически не влияют. Тогда одним из важных и динамически изменяющихся параметров рабочего конденсатора в ходе сушки является диэлектрическая проницаемость древесины (ε'_{∂}), значение которой зависит от её температуры (T) и влагосодержания (W). Функциональная связь между указанными величинами была получена путем аппроксимации табличных данных [7] для древесины хвойных пород. Результаты аппроксимации представлены на рисунке 3, а.

Наиболее сложным представляется расчет изменения емкости рабочего конденсатора во времени, что связано с решением системы уравнений тепло- и массопереноса с учетом распределения внутренних источников теплоты. С учетом ряда допущений и упрощений данная система сводится к виду (2)-(4), [8]:

$$\frac{dT_{cp}}{dt} = \left(1 - \xi(T_{cp}, W_{cp})\right) \frac{Q_{v}(T_{cp}, W_{cp})}{C(T_{cp}, W_{cp}) \cdot \rho_{0}};$$
(2)

$$\frac{dW_{cp}}{dt} = -\xi(T_{cp}, W_{cp}) \frac{Q_{v}(T_{cp}, W_{cp})}{\rho_{0} \cdot r(T_{cp})} \qquad ; \tag{3}$$

$$Q_{v}(T_{cp}, W_{cp}) = 2\pi f \,\varepsilon_0 \varepsilon (T_{cp}, W_{cp})) \operatorname{tg} \delta (T_{cp}, W_{cp}) E^2, \tag{4}$$

где T_{cp} и W_{cp} —среднее значение температуры и влагосодержание материала, Q_v — удельная мощность внутренних источников теплоты;

- ho_0 плотность материала в сухом состоянии;
- r удельная теплота парообразования,
- ξ критерий фазового превращения,
- C теплоемкость материала,
- f рабочая частота ВЧ генератора,
- $tg\delta$ тангенс угла диэлектрических потерь, функциональная связь которого с температурой и влагосодержанием для древесины хвойных пород показана на рисунке 3, б.

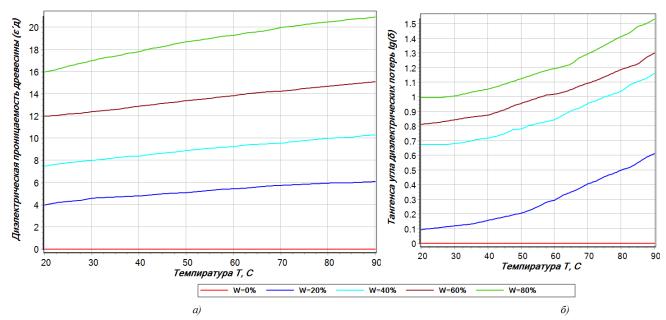


Рисунок 3 - Зависимость диэлектрической проницаемости ε'_{δ} (a) и тангенса угла диэлектрических потерь $tg\delta$ (б) древесины от температуры и влагосодержания

Подстановка результатов численного решения (2)-(4) в уравнение (1) с учетом зависимостей, приведенных на рисунке 2, показала, что в процессе сушки емкость рабочего конденсатора типичных для установок данного класса размеров может меняться в достаточно широком диапазоне значений от 1800 пФ при начальном влагосодержании 60 % до 400 пФ при конечном влагосодержании 12 %. Полученные результаты теоретических расчетов не противоречат данным, приведенным в [6], что свидетельствует об адекватности представленной математической модели. В дальнейшем планируется разработать и смоделировать работу системы управления согласующих контуров электротермической установки в программном продукте Simintech.

Список литературы

- 1) Шевляков, Д. Э. Об обеспечении оптимальной работы силовых ВЧ генераторов на переменную емкостную нагрузку / Д. Э. Шевляков, Д. Э. Шевляков, Д. А. Коренков // Энерго- и ресурсосбережение XXI век : материалы XX международной научно-практической конференции, Орёл, 14–16 ноября 2022 года. 302026, г. Орёл, ул. Комсомольская, д. 95: Орловский государственный университет им. И.С. Тургенева, 2022. С. 19-22.
- 2) Княжевская, Г. С. Высокочастотный нагрев диэлектрических материалов / Г. С. Княжевская, М. Г. Фирсова, Р. Ш. Килькеев; Под ред. А. Н. Шамова. 2-е изд., перераб. и доп. Ленинград : Машиностроение : Ленингр. отд-ние, 1989. 64с.
- 3) Донской, А. В. Высокочастотные электротермические установки с ламповыми генераторами / А. В. Донской, Г. С. Рамм, Ю. Б. Вигдорович. Москва ; Ленинград : Госэнергоиздат, 1957. 307 с.
- 4) Юрасов, Е. В. Ламповые генераторы и передатчики [Текст] : Учебник для специальных технических школ / Е. В. Юрасов. Москва : Гос. воен. изд-во, 1938. 335 с.

- 5) Пат. 2210874 С2 Российская Федерация, МПК Н05В 6/02, F26В 3/347. Установка для нагрева в поле токов высокой частоты древесины и других диэлектриков (варианты) / Рыболовлев В. П.; заявитель и патентообладатель Рыболовлев В. П. − № 2001108732/09; заявл. 02.04.2001; опубл. 20.08.2003.
- 6) Особенности высокочастотной сушки пиломатериалов / В. П. Галкин, А. А. Горяев, Н. Б. Баланцева [и др.] // Лесной вестник. Forestry Bulletin. 2017. Т. 21, № 4. С. 73-77. DOI 10.18698/2542-1468-2017-4-73-77.
- 7) Лесная энциклопедия : в 2-х томах / редкол.: Г. И. Воробьев (гл. ред.) [и др.]. Москва : Советская энциклопедия, 1985-1986. Т. 1: Абелия-Лимон. 1985. 563 с. : ил.
- 8) Коренков Д.А., Ревякин В.О. Подход к моделированию кинетики вакуумновысокочастотной сушки // Информационные технологии в электротехнике и электроэнергетике: материалы 12-й Всерос. науч.-техн. конф. Чебоксары: Изд-во Чуваш. ун-та, 2020. С. 470-473.

References

- 1) Shevlyakov, D. E. On ensuring optimal operation of RF power generators for variable capacitive load / D. E. Shevlyakov, D. E. Shevlyakov, D. A. Korenkov // Energy and resource conservation XXI century: materials of the XX International scientific and Practical conference, Orel, November 14-16, 2022. 302026, Orel, Komsomolskaya str., 95: I.S. Turgenev Orel State University, 2022. pp. 19-22.
- 2) Knyazhevskaya, G. S. High-frequency heating of dielectric materials / G. S. Knyazhevskaya, M. G. Firsova, R. S. Kilkeev; Edited by A. N. Shamov. 2nd ed., reprint. and additional Leningrad: Mashinostroenie: Leningr. otd-nie, 1989. 64s.
- 3) Donskoy, A.V. High-frequency electrothermal installations with lamp generators / A.V. Donskoy, G. S. Ramm, Yu. B. Vigdorovich. Moscow; Leningrad: Gosenergoizdat, 1957. 307 p.
- 4) Yurasov, E. V. Lamp generators and transmitters [Text]: Textbook for special technical schools / E. V. Yurasov. Moscow: State Military. publishing house, 1938. 335 p.
- 5) Pat. 2210874 C2 Russian Federation, IPC H05B 6/02, F26B 3/347. Installation for heating in the field of high–frequency currents of wood and other dielectrics (options) / Rybolovlev V. P.; applicant and patent holder Rybolovlev V. P. No. 2001108732/09; application 02.04.2001; publ. 20.08.2003.
- 6) Features of high-frequency drying of lumber / V. P. Galkin, A. A. Goryaev, N. B. Balantseva [et al.] // Lesnoy vestnik. Forestry Bulletin. 2017. Vol. 21, No. 4. pp. 73-77. DOI 10.18698/2542-1468-2017-4-73-77.
- 7) Forest Encyclopedia: in 2 volumes / editor: G. I. Vorobyov (chief editor) [and others]. Moscow: Soviet Encyclopedia, 1985-1986. Vol. 1: Abelia-Lemon. 1985. 563 p.: ill.
- 8) Korenkov D.A., Revyakin V.O. Approach to modeling the kinetics of vacuum-high-frequency drying // Information technologies in electrical engineering and electric power industry: materials of the 12th All-Russian Scientific and Technical conf. Cheboksary: Chuvash Publishing House. un-ta, 2020. pp. 470-473.

Информация об авторах

Дм.Э. Шевляков – магистрант;

Д.А. Коренков – канд. техн. наук, доцент кафедры электрооборудования и энергосбережения.

Information about the authors

Dm. E. Shevlyakov – undergraduate;

D. A. Korenkov – candidate of sciences in technology, docent of Electric equipment and energy saving department.

Статья поступила в редакцию 06.10.2022; одобрена после рецензирования 10.10.2022; принята к публикации 14.10.2022.

The article was submitted 06.10.2022; approved after reviewing 10.10.2022; accepted for publication 14.10.2022.